New insights into the regulation of the Saccharomyces cerevisiae UGA4 gene: two parallel pathways participate in carbon-regulated transcription.
نویسندگان
چکیده
The Saccharomyces cerevisiae UGA4 gene, which encodes the gamma-aminobutyric acid (GABA) and delta-aminolaevulinic acid (ALA) permease, is well known to be regulated by the nitrogen source. Its expression levels are low in the presence of a rich nitrogen source but are higher when a poor nitrogen source is used. In addition, GABA can induce UGA4 expression when cells are grown with proline but not when they are grown with ammonium. Although vast amounts of evidence have been gathered about UGA4 regulation by nitrogen, little is known about its regulation by the carbon source. Using glucose and acetate as rich and poor carbon source respectively, this work aimed to shed light on hitherto unclear aspects of the regulation of this gene. In poor nitrogen conditions, cells grown with acetate were found to have higher UGA4 basal expression levels than those grown with glucose, and did not show UGA4 induction in response to GABA. Analysis of the expression and subcellular localization of the transcription factors that regulate UGA4 as well as partial deletions and site-directed mutations of the UGA4 promoter region suggested that there are two parallel pathways that act in regulating this gene by the carbon source. Furthermore, the results demonstrate the existence of a new factor operating in UGA4 regulation.
منابع مشابه
Genes of Different Catabolic Pathways Are Coordinately Regulated by Dal81 in Saccharomyces cerevisiae
Yeast can use a wide variety of nitrogen compounds. However, the ability to synthesize enzymes and permeases for catabolism of poor nitrogen sources is limited in the presence of a rich one. This general mechanism of transcriptional control is called nitrogen catabolite repression. Poor nitrogen sources, such as leucine, γ-aminobutyric acid (GABA), and allantoin, enable growth after the synthes...
متن کاملMolecular genetic control of leaf lifespan in plants - A review
Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...
متن کاملRegulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae.
The yeast Saccharomyces cerevisiae senses glucose, its preferred carbon source, through multiple signal transduction pathways. In one pathway, glucose represses the expression of many genes through the Mig1 transcriptional repressor, which is regulated by the Snf1 protein kinase. In another pathway, glucose induces the expression of HXT genes encoding glucose transporters through two glucose se...
متن کاملEXPRESSION OF HEPATITIS B SURFACE ANTIGEN IN SACCHAROMYCES CEREVISIAE
The genome of HB V virus of serotype ayw cloned in pBR322 and expression shuttle vector p YES2 were used for construction of the HBsAg chimeric genes and their expression in Saccharomyces cerevisiae. Two recombinant plasmids were constructed. One of them contained the coding sequences for the major polypeptide of surface antigen. Another construct carried the major polypeptide with the pre-S2 a...
متن کاملGenomic Insights into the Different Layers of Gene Regulation in Yeast
The model organism Saccharomyces cerevisiae has allowed the development of new functional genomics techniques devoted to the study of transcription in all its stages. With these techniques, it has been possible to find interesting new mechanisms to control gene expression that act at different levels and for different gene sets apart from the known cis-trans regulation in the transcription init...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 153 Pt 11 شماره
صفحات -
تاریخ انتشار 2007